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ABSTRACT: Age-associated chronic inflammation is characterized by unresolved and uncontrolled 

inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process 

and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic 

inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these 

hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have 

been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope 

beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-

phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related 

upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, 

inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related 

senescent inflammation, a process we term “senoinflammation”, that we propose here as a novel concept. As 

described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing 

roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, 

which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider 

and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory 

therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that 

underlie the pathophysiological aging process.  

 

Key words: chronic inflammation, senoinflammation, aging, senescence-associated secretome, inflammasome, age-

related diseases 
 

The inflammatory process is an essential immunological 

defense system in living organisms that has evolved to 

enhance species survival. Short-term, acute inflammation 

is a first-line defense mechanism that acts against harmful 

agents, such as pathogens, toxins, or allergens. Under 

normal conditions, the tightly coordinated actions of 
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various defense components including immune cells, 

endogenous anti-inflammatory agents, and tissue 

remodeling processes enable the resolution of acute 

inflammation by facilitating the elimination of pathogens, 

infected cells, and repair to damaged tissues to restore 

body homeostasis [1]. 

However, when this intricate acute inflammatory 

response fails to resolve and persists, more defense 

components are mobilized to create a long-term 

unresolved immune response known as chronic 

inflammation. Chronic inflammation, which typically 

manifests itself in a low-grade manner for a prolonged 

period, involves macrophage- and lymphocyte-

accumulated leukocytes [2], and various other cellular 

components. It is important to recognize that this chronic 

inflammation is causally associated with changes in the 

cellular redox state and cell death signaling pathways [3]. 

One of the major changes that occur during aging is 

the dysregulation of the immune response, leading to a 

chronic systemic inflammatory state. Among the 

dysregulated proinflammatory mediators, cytokines and 

chemokines are major culprits in the development of 

chronic inflammation and the immunosenescence 

process.  

 

 

For instance, interleukin (IL)-6, tumor necrosis factor 

(TNF)-α, and their receptors, are upregulated in aged 

tissues and cells [4]. Elevated levels of chemokines and 

C-reactive protein (CRP) have been found to be involved 

in age-related pathogenesis [5]. We have previously 

reported that several key intra- or inter-cellular signaling 

pathways are closely associated with age-related chronic 

inflammatory changes during aging [3,6-9].  

 In the aging literature, there are currently two major 

hypotheses related to age-related inflammation: 

inflammaging [10,11] and molecular inflammation [3,12-

15]. These two are complementary to each other to a large 

extent but differ in their focus on age-related 

inflammatory phenomena. However, recent advances in 

the inflammation field have made it abundantly clear that 

age-related chronic inflammation needs to be 

comprehensively defined at the molecular, cellular, and 

systemic levels. Because chronic inflammation is so 

widely and deeply involved in many age-related chronic 

disorders such as atherosclerosis, diabetes, obesity, 

sarcopenia, and Alzheimer’s disease [15], it is necessary 

to establish a new pathophysiological basis for chronic 

inflammation in relation to the aging process. 

 

 

 

 
Figure 1. Schematic representation of the senoinflammation concept. MMP, matrix 

metalloproteinase; Infla-genes, proinflammatory genes; ER, endoplasmic reticulum; TLRs, Toll-like 

receptors; HMGB1, high-mobility group box 1; RAGE, receptor for advanced glycation end product. 
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This review summarizes the current knowledge in the 

field of age-related inflammation. We further discuss the 

proinflammatory pathways involved in regulating the 

immunosenescence process and age-related chronic 

inflammation. We present a new concept with an 

expanded view of the overall picture of age-related 

chronic inflammation, which we call senescent 

inflammation (in short, “senoinflammation”). The salient 

feature of this concept is to incorporate many 

proinflammatory mechanisms that have not been 

previously considered to be important in age-related 

chronic inflammation.  

 

Current understanding of age-related inflammatory 

processes  

 

Molecular level  

 

The nuclear factor (NF)-κB signaling pathway has been 

recognized as the most important key process underlying 

inflammation. Several studies, including ours, have 

reported that age-related NF-κB signaling upregulates the 

expression of the proinflammatory genes, TNF-α/β, ILs 

(IL-1β, IL-2, and IL-6), chemokines (IL-8; regulated on 

activation, normal T cell expressed and secreted 

[RANTES]), and adhesion molecules (AMs) [7-16], as 

shown in Figure 1. Furthermore, NF-κB-mediated 

upregulation of proinflammatory mediators such as CRP, 

IL-6, and TNF-α has been shown to be closely associated 

with various age-related chronic pathophysiological 

conditions [3].  

The important role of NF-κB in maintaining immune 

responses during age-related inflammation involves 

activation of proinflammatory cells, leading to the 

increased expression of various cytokines and 

chemokines. Adler et al. [17] used motif mapping of the 

promoters of genes upregulated with aging and concluded 

that NF-κB is the transcriptional factor most closely 

associated with aging [17]. In addition, chronic activation 

of NF-κB has been detected in tissues including the skin, 

kidney, cardiac muscle, and brain (cerebellum and 

hypothalamus) [7,18-21]. Several aging studies on NF-

κB, and its related signaling have provided important 

molecular insights into the altered cellular signaling 

systems that underlie chronic inflammation during aging. 

These signaling pathways include the insulin and insulin-

like growth factor (IGF) pathways, 5'-AMP-activated 

protein kinase (AMPK)-mechanistic target of rapamycin 

(mTOR) pathway, Forkhead box O (FOXO) families, 

sirtuin (SIRT), and p53-related pathways [22]. 

Data from our laboratory have provided a molecular 

insight into how chronic stimulation of NF-κB activates 

inflammatory processes [23, 24]. Our studies have 

documented that age-associated NF-κB activation is 

exquisitely sensitive to redox state and oxidative stress, 

and subsequently leads to increased mitogen-activated 

protein kinase (MAPK)/inhibitor of NF-κB (IκB)-IκB 

kinase (IKK) signaling [25]. One interesting recent study 

has reported the activation of NF-κB occurs in the 

hypothalamus during aging [20]. The authors of this paper 

suggested that chronic activation of NF-κB signaling 

causes hypothalamic inflammation, which then affects 

whole-body metabolism, in particular, the endocrine 

regulation of glucose and lipid metabolism [20]. These 

findings render support for the possibility that 

dysregulated local tissue inflammation affects the 

systemic metabolic responses of the whole organism. 

These new revelations indicate that increased cellular 

inflammatory signaling pathways and tissue inflammation 

can propagate to systemic inflammation during the aging 

process.  

 

 Cellular level  
 

The most noticeable cellular inflammatory changes in 

age-related chronic conditions are associated with 

macrophages. The well-known biological activities of 

macrophages include M1/M2 polarization, phagocytic 

activity, Toll-like receptor (TLR) signaling, and wound 

repair [26]. A decline in the expression of macrophage 

cell surface receptors, such as the major 

histocompatibility class (MHC)-II protein, has been 

reported in both aged mice and humans [27,28]. In 

addition, interferon (IFN)-γ-induced antigen-presenting 

capacity has been shown to be decreased by 50% in aged 

mice. Moreover, TLR signaling, M1/M2 polarization, and 

NF-κB signaling also differ in aged macrophages 

compared with young macrophages [28, 29]. Data in the 

literature clearly indicate that there is a substantial 

dysregulation of macrophage activities during aging, in 

particular, their ability to produce various pro-

inflammatory cytokines. This latter effect can be 

attributed to a redox imbalance in these dysregulated 

aging macrophages. 

Aberrant increases in macrophage migration and 

infiltration into various tissues has been noted to be a 

common occurrence, as evidenced by the massive 

accumulation of macrophages in adipose tissue during 

aging [30]. In fact, it has been reported that almost all 

tissues including the liver, muscle, adipose, brain, kidney, 

and heart showed increased macrophage infiltration with 

aging [31-33]. Such a chronic increase in macrophage 

infiltration into these various tissues is likely to trigger the 

proinflammatory process at the tissue level.  

 Increases in innate immune macrophages are 

accompanied by increases in neutrophils, as well as 

adaptive immune cells, such as natural killer (NK), B, and 

T cells. Although the specific types and functions of these 



 Chung HY., et al                                                                 Proposal of the senoinflammation concept underlying aging 

Aging and Disease • Volume 10, Number 2, April 2019                                                                               370 

 

cells in aged tissue differ according to the animal models 

studied and the tissue type, it is evident that increased 

immune cell infiltration contributes to enhanced chronic 

inflammation during aging [34]. 

 

 
Table 1. Proinflammatory SA secretome in senescent 

cells, aged tissues, and human tissues. 

 
SASP Factors Senescent 

cells 

Aged 

tissues 

Human 

tissues 

Cytokines, chemokines, and regulators 

IL-1α ↑↑↑ -  

IL-1β ↑↑ ↑↑  

IL-6 ↑↑↑ ↑↑↑  

IL-7 ↑↑↑ ↑↑ ↑ 

IL-13 ↑↑ - ↑ 

IL1R1 ↑ ↑  

IL11 ↑ ↑↑↑  

IL15 ↑ -  

IL6R ↑ ↑↑  

IL27Rα ↑ -  

IL2RA ↑ ↑↑↑ ↑ 

IL-8 ↑↑↑ -  

GRO-α (CXCL1) ↑↑↑ - ↑ 

GRO-β (CXCL2) ↑↑↑ - ↑ 

GRO- (CXCL3) ↑↑↑ - ↑ 

MCP-1 (CCL2) ↑↑↑ ↑↑↑  

MCP-2 ↑↑↑ -  

MIP-1α (CCL3) ↑↑↑ - ↑ 

MIP-3α ↑↑ ↑↑↑  

TNF-α - ↑ ↑ 

TNF-β - ↑↑ ↑ 

sTNFRI(TNFRSF1B)  ↑↑ ↑ 

OPG(TNFRSF11B)  ↑* ↑ 

Other proinflammatory factors 

MMP1 ↑↑↑ -  

MMP3 ↑↑↑ ↑↑  

MMP10 ↑↑↑ -  

MMP12 ↑↑ ↑↑↑  

MMP13 ↑↑ -  

MMP14 ↑↑ - ↑ 

TIMP1  ↑↑↑ ↑ 

iNOS - ↑↑↑ ↑ 

IGFBP2 ↑ - ↑ 

IGFBP3 ↑ ↑* ↑ 

IGFBP6 ↑ ↑ ↑ 

HGF ↑ ↑ ↑ 

EGFR ↑ ↑ ↑ 

FAS ↑ ↑ ↑ 

Reference 144-146 24, 125 TCGA 

data base 
 

 

 

Recent research on adipose tissue changes during 

aging has provided considerable insights into its role in 

age-associated chronic inflammation [35]. Adipose tissue, 

the largest organ in some organisms, is a major risk factor 

for the development of the metabolic syndrome during 

aging because high levels of total and visceral fat are 

tightly associated with high proinflammatory cytokine 

levels [36]. Macrophage infiltration into adipose tissue, 

which is responsible for the local and systemic production 

of proinflammatory cytokines, may, therefore, be a major 

cause of the chronic inflammation and metabolic 

problems in the aged subject [37]. Although macrophage 

infiltration partly explains how proinflammatory 

mediators are chronically upregulated with aging, the 

mechanisms that drive this increased infiltration during 

aging have not yet been clearly identified. 

With increasing age, senescent macrophages (M2-

like phenotype) exhibit decreased proinflammatory 

cytokine secretion, impaired phagocytosis and 

chemotaxis, and proliferation [38-40]. Macrophages are 

pre-programmed to clear senescent cells that produce a 

senescence-associated (SA) secretome, commonly 

referred to as the senescence-associated secretory 

phenotype (SASP) (Table 1). It has been suggested that 

insufficient clearance of senescent cells by senescent 

macrophages prolongs the inflammatory processes, i.e., 

chronic inflammation, because the SA secretome 

contributes to tissue inflammation [41]. Section SA 
secrotome includes a further discussion on the role of the 

SA secretome in aggravating chronic inflammation. 

 

Systemic level 

 

Current evidence strongly indicates that increased 

systemic inflammation is closely associated with aging 

and age-related chronic diseases [42,43]. As mentioned 

earlier, this age-related systemic inflammation is 

distinctly and functionally different from acute 

inflammation due to the sustained high levels of 

proinflammatory mediators that are present. It is now well 

recognized that adipose tissue is one of the major sites 

involved in systemic inflammation. Increased 

macrophage infiltration into the adipose tissue 

environment provides a new paradigm for resident 

macrophage, leading to the production of various 

inflammatory cytokines that induce not only adipose 

tissue inflammation but also propagate systemic 

inflammation [37]. Because aging is accompanied by 

increased adiposity, macrophage infiltration further 

aggravates age-related systemic inflammation [44]. 

Indeed, both epidemiological and experimental evidence 

indicates that a state of low-grade, chronic, subclinical 

inflammation persists in elderly populations of aged 

animals; these observational and experimental data have 

served as the basis for the inflammaging hypothesis [45, 

46]. More interestingly, a recent longitudinal study of 

Japanese semi-supercentenarians revealed that 

inflammation, not telomere length, predicts successful 
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aging at an extremely advanced age [47]. The authors 

concluded that chronic systemic inflammation had a 

greater effect on mortality and loss of cognitive function 

in these centenarians, showing chronic inflammation as an 

important malleable factor in the aging process [47]. 

Michaud et al. have shown that two to four-fold 

elevations in the circulating levels of inflammatory 

cytokines, such as TNF-α, IL-6, and IL-1β, CRP and 

serum amyloid A, are typically observed in the elderly or 

aged animal compared to the young [48]. These 

observations are noteworthy because the levels of 

cytokines increase even in healthy individuals in the 

absence of acute infection or diseases [49]. Age-

associated increases in systemic inflammation are 

associated with, and predictive of, many aging 

phenotypes. For example, aberrantly increased 

inflammation is commonly associated with tissue 

dysfunction, metabolic syndrome, immune dysfunction, 

and neuronal problems [48]. 

 Interestingly, evidence shows that proinflammatory 

mediators can interact with one another and the magnitude 

of this interaction increases as the level of 

proinflammatory mediators increases. For example, TNF-

α plays an important role in the production of IL-6 by 

activating several pathways, and IL-6 is a major factor in 

the elevation of CRP levels found in older adults [50]. 

Furthermore, as discussed in section RAGE, advanced 

glycation end-products (AGE) and high-mobility group 

box 1 (HMGB1), which have not previously been 

considered to be inflammatory mediators, are now 

thought of as being diverse systemic inflammatory 

mediators of aging [51,52]. Although systemic 

inflammation has been proposed to be a major factor 

associated with increased morbidity and mortality during 

aging, the precise molecular mechanism remains to be 

determined. Therefore, the development of a successful 

anti-aging therapy, aimed at suppressing chronic systemic 

inflammation, will require a detailed understanding of this 

mechanism as well as the identification of suitable 

molecular targets [43].  

 

Inflammation as a major underlying risk factor for 

chronic diseases   
 

A chronic inflammatory state is commonly observed in 

aging and various age-related chronic diseases. The 

involvement of inflammation in various chronic diseases 

has been discussed in our previous review, as well as by 

others [42,53,54], and we will now briefly describe the 

molecular details.   

Metabolic disorders including obesity, insulin 

resistance, type 2 diabetes, and fatty liver disease are 

casually associated with inflammation. Metabolically 

active tissues such as adipose tissue, liver, muscle, and 

pancreas are common sites of inflammation in aging [55-

57]. Proinflammatory factors, acting in either autocrine or 

paracrine ways, interrupt normal tissue function, as seen 

for example in insulin resistance. Among metabolic 

tissues, chronic inflammation in adipose tissue has been 

well documented and is known to contribute to increased 

systemic inflammation, indicating an important link 

between obesity and its pathophysiological consequences 

[58]. Fatty liver diseases are also associated with 

inflammation [59].  

The inflammatory process also plays an important 

role in the pathogenesis of atherosclerosis [60]. Leukocyte 

recruitment and an increase in proinflammatory cytokines 

are characteristic of the early stages of atherogenesis. 

Vessel wall cell-derived cytokines also participate in the 

innate immune response in atherosclerosis. Inflammatory 

pathways further promote the thrombotic complications 

of atherosclerosis responsible for stroke and myocardial 

infarction [61]. Libby et al. have reported that targeting 

the infiltration of immune cells, or proinflammatory 

mediators, causes a reduction in atherosclerosis in animal 

models, as well as in clinical studies [62]. A recent review 

article by Biasucci et al., focusing on inflammation as the 

underlying cause of cardiac dysfunction, has highlighted 

the intricate involvement of oxidative stress, autophagy, 

damage-associated molecular patterns (DAMPs), TLR4 

signaling, and the contribution of the NLRP3 

inflammasome [63].  

Recent evidence has also shown that chronic 

inflammation is an underlying cause of age-related 

neurodegenerative diseases. For example, several 

proinflammatory cytokines have been implicated in 

dementia and cognitive decline [64]. Recent evidence 

strongly indicates the potentially harmful role of 

microglia (brain-specific macrophages) in the 

development of dementia, highlighting the importance of 

the immune-inflammation link [65]. It is well known that 

microglial activation signifies a primary inflammatory 

state and causes secondary leukocyte invasion, which 

amplifies inflammation [65]. Moreover, brain astrocytes 

and oligodendrocytes also participate in the inflammatory 

process by producing or responding to, proinflammatory 

mediators [66].  

Similar to other inflammatory diseases, dementia and 

Alzheimer’s diseases are also associated with the aberrant 

expression of inflammatory mediators such as 

complement factors, cytokines, Toll-like receptors 

(TLRs) and other pattern recognition receptors, lipid 

metabolites derived from cyclooxygenase and 

lipoxygenase, and other soluble signaling proteins [66]. 

Another crucial disease where chronic inflammation is 

involved in cancer, which has been of tremendous interest 

after the discovery that inflammation plays an important 

role in tumor progression [67]. It is now clear that 



 Chung HY., et al                                                                 Proposal of the senoinflammation concept underlying aging 

Aging and Disease • Volume 10, Number 2, April 2019                                                                               372 

 

inflammatory cells are indispensable participants in 

neoplastic formation, cancer cell proliferation, survival, 

and migration [68]. With respect to tumor progression, it 

is important to note that tumor cells also share common 

signaling molecules with the innate immune system, 

including cytokines/chemokines and cell adhesion 

molecules [69].  

Current evidence strongly suggests that NF-κB, the 

central core inflammatory mediator, is a key 

transcriptional factor in the initiation and progression of 

cancer [70]. Activated NF-κB stimulates both the 

production of proinflammatory mediators and inhibits 

cancer cell death. Moreover, NF-κB interacts with other 

transcriptional factors such as signal transducer and 

activator of transcription 3 (STAT3) and p53, which are 

also implicated in cancer, to facilitate cancer initiation and 

progression [71,72]. Crosstalk can also occur at the level 

of upstream signaling components, as opposed to at 

transcriptional level. Glycogen synthase kinase 3 

(GSK3)-β, MAPK, or protein kinase B (PKB), which 

have all been implicated in cancer, also modulate NF-κB 

transcriptional activity [70]. These lines of evidence 

support the involvement of the inflammation process, via 

NF-κB signaling, in the induction and progression of 

cancer.  

 

How is age-related inflammation viewed at present? 

 

Acute and chronic inflammation in aging  
 

As mentioned earlier, the inflammation progresses in two 

stages: a short-term resolvable inflammatory state and a 

long-term unresolved chronic inflammatory state. The 

most powerful players in acute inflammation are tissue-

resident macrophages, neutrophils, and mast cells since 

they act as the first line of defense. Pattern recognition 

receptors on these cells initially recognize harmful stimuli 

such as pathogen-associated molecular patterns (PAMPs), 

damage associated molecular patterns (DAMPs), or both. 

The most well-known receptors involved in these 

recognition processes are TLRs and NOD-like receptors 

(NLRs). Following recognition, signal transduction 

pathways activate transcription factors such as NF-κB and 

activator protein (AP)1 [61]. These transcription factors 

induce the expression of genes that initiate the production 

of several inflammatory factors including cytokines, 

chemokines, eicosanoids, and other active 

proinflammatory molecules. Further activation of other 

immune cells also occurs in acute inflammation. 

Ultimately, a successful acute inflammatory response 

eliminates the cause of the inflammation thereby 

maintaining the homeostasis of the individual [73].  

During the resolution process, newly uncovered anti-

inflammatory players including lipoxins, resolvins, 

protectins, and other eicosanoids are now known to play 

key roles [73]. A recent report by Arnardottir et al. [74] 

has demonstrated that aged mice show a delayed 

resolution of acute inflammation because of reduced 

levels of these specialized pro-resolving lipid mediators. 

In contrast, un-resolved, low-grade inflammation 

follows a different path from acute inflammation. Further 

recruitment of macrophages, along with the appearance of 

T cells, replaces the initial neutrophil population in the 

acute phase of inflammation. These secondary immune 

cells attempt to eliminate the cause of the inflammation. 

However, they usually fail to resolve the initial 

inflammation, leading to a chronic inflammatory state 

with the formation of ectopic lymphoid-like structures 

such as granulomas [75]. Although the exact mechanisms 

and inflammation processes differ in various chronic 

inflammatory states, the consequences are similarly 

associated with pathological conditions such as 

autoimmune diseases, fibrosis-related diseases, cancer, 

and other degenerative diseases. 

 

Brief descriptions of the two hypotheses of age-related 

inflammation  

 

In the aging literature, two major hypotheses concerning 

the involvement of chronic inflammation in aging have 

been proposed: molecular inflammation [3,12-14] and 

inflammaging [10,11]. 

 

1) Molecular inflammation 

 

This hypothesis was first proposed by our laboratory in 

2002, based on molecular changes in inflammation-

related transcription factors and in the expression levels 

of their target genes. The hypothesis states that these 

changes are the mechanism underlying the aging process 

and age-related diseases [14,15]. The validity of this 

hypothesis stems from the extreme sensitivity of the 

transcriptional factor NF-κB to oxidative stress and to 

changes in redox balance [3]. Incessant oxidative stress 

and compromised antioxidant defense systems during 

aging are blamed for increased reactive species (RS), 

including reactive oxygen species (ROS), reactive 

nitrogen species (RNS), and reactive lipid aldehydes [3]. 

Although young organisms have a well-functioning 

antioxidant system to maintain redox balance, the age-

related decline in the anti-oxidant defense system fails to 

maintain redox homeostasis, leading to the activation of 

various proinflammatory signaling pathways. 

Altered redox signaling pathways can further increase 

various redox-sensitive transcription factors, in addition 

to NF-κB and AP1, during aging. Cellular redox signaling 

generally activates protein tyrosine kinases/protein 

tyrosine phosphatases (PTKs/PTPs) located near the 
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plasma membrane, which further activate serine/threonine 

kinases/phosphatases [25]. This imbalance in PTKs/PTPs 

during oxidative stress further activates various 

downstream kinase such as the NF-κB-inducing kinase 

(NIK)/IKK and MAPK. This kinase further activates age-

related NF-κB activation. Consequently, the gene 

expression of proinflammatory cytokines (e.g., TNFα, IL-

1β, and IL-6) as well as cyclooxygenase-2 (COX-2), 

lipoxygenase (LOX), inducible nitric oxide synthase 

(iNOS), and AMs (vascular cell AM 1 [VCAM-1], 

intercellular AM 1 [ICAM-1], and E-selectin) are all 

upregulated through NF-κB activation during the aging 

process [16,25,76]. It is worth emphasizing here that NF-

κB act as a master transcription factor for many 

proinflammatory genes, pathways, and other mediators, 

including the SA secretome (See Fig. 1). 

 

2) Inflammaging 

 

An age-related phenomenon of a progressive increase in 

proinflammatory status was originally termed 

“inflammaging” by C. Franceschi and his group in 2000. 

Inflammaging is manifested by increased pro-

inflammatory cytokines that are commonly observed 

during aging [77]. This novel concept states that 

activation of the aged innate immune system leads to a 

dysregulation in inflammation that impairs the ability to 

initiate an efficient innate and adaptive immune program 

in responses to antigens or environmental stimuli (e.g., 

ROS) [78]. Various aging studies have produced data in 

support of inflammaging in aged mice or human subjects 

exhibiting elevated steady-state levels of inflammatory 

cytokines, acute phase proteins, clotting factors, stress 

hormones, and redox stress [10,79]. According to this 

hypothesis, these alterations in the immune system 

contribute to the development of overt organ-specific 

inflammatory diseases such as atherosclerosis, 

Alzheimer’s disease, and diabetes [80]. Although the 

inflammaging theory has served well in describing the 

phenomenon of age-related inflammation that modulates the 

course of aging and age-related diseases, the detailed 

mechanisms behind inflammaging are sparse. 
 

3) More players participate in chronic inflammation 

 

Newly emerging data has revealed that age-related 

chronic inflammation is much more widely and heavily 

involved in many cellular activities than previously 

thought. One example is that decreased autophagic 

function is implicated in age-related inflammation [81]. 

Autophagy plays an essential role in the removal of 

dysfunctional intracellular proteins by lysosomal 

degradation. Recently, it has been reported that the 

autophagic response is diminished in lipopolysaccharide 

(LPS)-treated aged rats and that lipid metabolism is 

impaired during sepsis, indicating that the autophagic 

response is important in regulating lipid metabolism after 

endotoxin challenge [82].  

The autophagic response declines with age and this 

impairment potentially leads to the activation of 

inflammasomes. Inflammasomes, intracellular sensors for 

detecting pathogenic agents and sterile stress, activate 

proinflammatory cytokines as a consequence of tissue 

injury or necrosis [81]; thus, the impaired autophagic 

function associated with age likely results in chronic 

inflammatory responses through a defective regulation of 

the cellular inflammasomes system (See more on 

inflammasomes in Section Inflammasome). 
As mentioned earlier, during aging, adipose tissue 

mass increases in various tissues such as the liver, bone, 

and muscle. This age-dependent increase in tissue 

adiposity can locally and systemically influence 

inflammatory responses by increasing the secretion of 

adipokines [83]. These adipokines, which are adipose-

derived cytokines and chemokines, lead to immune cell 

recruitment to the adipose tissue and induce the 

production of a number of proinflammatory cytokines. 

Consequently, the increased adiposity of various tissues 

seen during aging contributes to an increase in the 

proinflammatory environment, partly via increased 

adipokine production.  
It is important noting that these age-related changes in 

adiposity, autophagy, and inflammasome that exacerbate 

age-related chronic systemic inflammation are not 

considered in the current, conventional, view of chronic 

inflammation.   

 Other important participants in the chronic 

inflammation field are new mediators of inflammatory 

signaling pathways. These factors include molecules such 

as non-coding microRNAs (miRNAs), mitochondrial 

DNA, and N-glycosylated proteins that are found in the 

circulatory system and can influence inflammatory state 

during the aging process [84]. A more detailed description 

of these aspects is described in the following section.   

 

Age-related cellular factors and processes 

exacerbating age-related chronic inflammation 

 

ER stress  

 

The endoplasmic reticulum (ER) is a cellular organelle 

that plays a central role in maintaining proteostasis 

because of its involvement in protein synthesis, folding, 

maturation, quality control, distribution, and degradation 

[85]. With respect to insulin signaling, the ER has been 
found to be associated with insulin resistance [86]. ER 

stress induces serine phosphorylation of insulin receptor 

substrate 1 (IRS-1) via the c-Jun N-terminal kinase (JNK) 
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pathway, which then inhibits insulin responses in cultured 

liver cells [55,87] enhancing lipogenesis, affecting 

hepatic steatosis, and influencing insulin resistance [88]. 

Thus, the ER may be a proximal site that senses over-

nutrition and translates it into metabolic and age-related 

inflammatory responses.  

Lipids play a wide variety of roles under 

pathophysiological conditions. A wide-spread abnormal 

accumulation of lipids in adipose tissue, as well as ectopic 

sites such as the liver and muscle, during aging, provides 

a great opportunity for ER stress and the activation of 

proinflammatory genes in numerous tissues. Furthermore, 

ER stress has been demonstrated to activate JNK, as well 

as IKK, by increasing IRE1, thereby inducing NF-κB 

activation [89, 90]. Increased JNK and NF-κB signaling 

then induce insulin resistance and the expression of 

proinflammatory cytokines [91]. 

The notable association between the metabolic 

syndrome and the aging process indicates that 

inflammation underlies the onset and progression of 

metabolic syndrome [92]. Furthermore, it has been 

established that insulin resistance is potentiated and 

induced by the proinflammatory cytokine TNF-α, as well 

as other cytokines that are upregulated during aging [93].  

Many studies suggest that ER stress and insulin 

resistance are associated with lipid accumulation, leading 

to an exacerbation of inflammation and age-associated 

chronic inflammation. Prolonged ER stress leads to both 

inflammation and cell death [94], and recent studies have 

shown that ER stress-induced inflammation and cell death 

are mediated by NOD-like receptor (NLR) family pyrin 

domain containing 3 (NLRP3) inflammasome activation 

[95]. NLRP3 activates caspase-1, which then processes 

pro-IL-1β to the mature, secreted IL-1β form [96,97]. 

Zhang and Kaufman [94] have reported that suppressing 

ER stress-associated NLRP3 inflammasome activation 

might be an effective therapeutic strategy for blocking the 

vicious cycle of inflammation and adipose dysfunction in 

age-related diseases. 

 

Inflammasome 

 

The NLRP3 inflammasome is an intracellular 

multiprotein complex that can recognize pathogen- and 

DAMP [98]. NLRP3 activation leads to the production 

and secretion of IL-1β as well as IL-18 [98]. The NLRP3 

inflammasome has been shown to play a central role in 

obesity, insulin resistance, and inflammation [99,100]. 

Activation of the well-studied NLRP3 inflammasome is 

achieved through a diverse array of molecules that can be 

sensed by cell surface receptors and this activation is 

thought to participate in aging-related inflammatory 

processes. Aged NLRP3-deficient mice have a significant 

increase in naive T cells along with a reduction in 

effector-memory cells. These findings suggest that the 

NLRP3 inflammasome causes thymic involution by 

sensing the age-associated increase in intrathymic 

“lipotoxic danger signals,” and that dampening of NLRP3 

inflammasome activation may enhance naive T cell 

production by the thymus. The NLRP3 inflammasome, 

therefore, controls the aging of the thymus and lead to 

immunosenescence.  

Hanouna et al. have recently reported that 

suppression of the NLRP3 inflammasome extends 

lifespan in mice by attenuating age-related degenerative 

changes, including cognitive decline [101]. Based on their 

findings, Youm et al. [102] have proposed that the 

suppression of aberrant NLRP3 activity during aging may 

attenuate age-related diseases by reducing chronic 

inflammation. In addition, aged mice failed to show 

upregulation of TLR1, TLR2, NOD2, NLRP3, and IL-1β 

in response to colonization. Baseline inflammation in 

aged mice, along with a failure to upregulated innate 

response genes, could impede the signaling that promotes 

monocyte/macrophage influx and, thus, explains the 

delayed clearance [103]. 

 Youm et al. have also shown that pharmacological 

NLRP3 inflammasome blockers, which specifically target 

the thymus, may delay immunosenescence, maintain a 

diverse T cell repertoire, and enhance immune-

reconstitution in elderly patients [102]. Furthermore, aged 

mice developed lung fibrosis and exhibited increased 

morbidity and mortality after bleomycin-induced lung 

injury in NLRP3 activation. Both bone marrow-derived 

macrophages and alveolar macrophages from aged mice 

display higher levels of NLRP3 inflammasome activation 

and caspase-1-dependent IL-1β and IL-18 production than 

the same macrophages from younger mice [104]. 

Furthermore, these effects are associated with altered 

mitochondrial function and increased ROS production 

[104]. 

It is worth mentioning that we have recently observed 

increased hepatic inflammasomes during aging 

(unpublished data). Age-related activation of the 

inflammasomes, therefore, exacerbates 

immunosenescence and inflammation in the aging 

process, leading to age-related chronic inflammation. 

 

HMGB1 and receptor for AGE (RAGE)  
 

Damage-associated molecular patterns (DAMPs) are 

molecules released by stressed cells undergoing necrosis 

that act as endogenous danger signals to promote the 

inflammatory response [105]. This response by DAMPs 

is also called “sterile inflammation” because it is initiated 

in response to inflammatory insults such as trauma or 

ischemia in the absence of pathogen infection [106]. 

DAMPs include the chromatin-associated protein 
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HMGB1, heat shock proteins (HSPs), cytokines including 

IL-1β and IL-33, DNA/RNA, S100 molecules, purine 

metabolites, and hyaluronan fragments. They are 

expressed in different cell types and function in normal 

cellular homeostasis, but increased serum levels of 

DAMPs have been associated with many inflammatory 

diseases including sepsis, rheumatoid arthritis, diabetic 

nephropathy, atherosclerosis, and neurological diseases 

[107]. 

In this review, HMGB1 and the receptor for advanced 

glycation end product (RAGE) are discussed in relation to 

age-related inflammation. HMGB1 is a member of the 

non-histone nuclear protein family and is a highly 

conserved gene that is expressed in all eukaryotic cells. 

Under normal conditions, HMGB1 binds to the minor 

groove of DNA and bends it to facilitate gene 

transcription, but under stressed conditions such as injury 

or infection, HMGB1 is released and promotes 

inflammatory responses [108]. Elevated HMGB1 levels 

have been reported in aging and various inflammatory 

diseases such as sepsis, rheumatoid arthritis, and cancer 

[109,110].  

The release of HMGB1 can be triggered by different 

inflammatory mediators such as LPS, IL-1β, and IFN- 

and it induces the NF-κB or JAK/STAT signaling 

pathways, thereby potentiating inflammatory responses 

[111,112]. Although the signaling pathways elicited by 

HMGB1 are not fully defined, HMGB1 has been reported 

to trigger the activation of key signaling pathways by 

binding to RAGE, TLR-2, TLR-4, and TLR-9 [113] (there 

is a further discussion of TLRs in part d below).    

RAGE was the first identified receptor for HMGB1 

[114] and is a member of the immunoglobulin 

superfamily and is expressed on mononuclear phagocytes, 

vascular smooth cells, neurons, and a variety of tumor 

cells [115]. RAGE, as a multi-ligand receptor, interacts 

with HMGB1, as well as various other ligands such as 

AGE, S100 proteins, and β-amyloid [115]. HMGB1-

induced RAGE signaling activates MAPKs, 

phosphoinositide 3-kinase (PI3K)/Akt, JAK/STAT, Src 

family kinases, and NF-κB and has been implicated in 

various chronic inflammatory diseases [116]. 

Furthermore, HMGB1/RAGE induces IL-17 expression, 

which aggravates inflammation in the peripheral blood 

cells of patients with hepatitis B [117]. An elevated 

HMGB1 expression has been identified in smokers with 

chronic obstructive pulmonary disease (COPD) [118]. In 

addition, released HMGB1 not only induces p53 activity 

and inflammation in senescent fibroblasts [119], but is 

also involved in proinflammatory responses in the aged 

kidney [109] and brain [52].  

 

 

 

TLR signaling changes  

 

Toll-like receptors (TLRs) are a family of pattern 

recognition receptors involved in initiating innate immune 

system response to microbes and tissue damage [120]. 

TLRs are widely expressed in the cells of many tissues 

including epithelial, endothelial, dendritic, 

monocytes/macrophages, and B- and T-cells [121]. The 

human and the mouse TLR family contain ten and thirteen 

members, respectively [122].  

Accumulating evidence indicates that aging and 

chronic inflammations are closely associated with 

increased TLR expression. TLR5 expression and TLR5-

induced production of IL-8 were found to be higher in 

monocytes from older individuals than in those from 

younger individuals [123]. Elevated TLR4 expression and 

pro-inflammatory signaling have been observed in the 

muscle of older individuals, and these alterations were 

associated with decreased insulin sensitivity and muscle 

loss [124]. Our recent results show that there is an increase 

in expression of TLR7 and proinflammatory cytokines in 

aged rat kidneys [125]. 

 Several studies have reported that TLRs are 

associated with age-related inflammatory diseases [124]. 

Because of the tight link between TLRs and inflammatory 

diseases, TLR4 is extensively involved in renal fibrosis 

and chronic kidney disease progression [126] and the 

expression of TLR2 and TLR4 mediates 

ischemia/reperfusion injury [127]. In addition, TLR7 and 

TLR9 contribute to the development of 

glomerulonephritis in systemic lupus erythematosus 

[128]. Therefore, TLRs may provide mechanistic support 

for a close link between chronic inflammation and the 

aging process. 

 

Non-coding miRNAs 

 

Non-coding miRNAs comprise a highly conserved family 

of small RNAs (18–22 bp in length) that generally act as 

negative post-transcriptional regulators of gene 

expression. They are predicted to regulate the expression 

of more than 50% of human protein-coding genes acting 

through mRNA destabilization and/or translational 

repression. The miRNAs control a wide array of 

biological processes such as cell differentiation, 

proliferation, and apoptosis [129].  

New emerging data has shown that several miRNAs 

are involved in regulating inflammation; their prototypes 

are miR-155, miR-21, and miR-146a [130], often referred 

to as inflamma-miRs. These miRNAs have also been 

implicated in aging and age-related inflammatory disease. 

In a cohort study, circulating levels of miR-21 in the 

plasma of aged subjects and animals increased with age 

and there were positive correlations between miR-21 
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levels and two important aging biomarkers, namely CRP 

and fibrinogen [131]. In addition, centenarians had lower 

miR-21 levels than healthy 80-year-old subjects, 

suggesting that low levels of miR-21 could be a useful 

biomarker of longevity [132]. Interestingly, miR-155 

expression in the peripheral blood of older women was 

higher than in young adult women [133]. Furthermore, 

miR-146a plays an important role in the resolution of 

inflammation but shows altered expression in the plasma 

from patients with cardiovascular disease [134] and 

Alzheimer’s diseases [135].  

Several miRNAs have been shown to modulate 

specific signaling pathways including the NF-B, mTOR, 

SIRT, transforming growth factor (TGF)-, and Wnt 

signaling pathways that are thought to be related to 

inflammation, cellular senescence, and age-related 

diseases [136]. In aging tissues aging as well as cellular 

senescence, dysregulated miRNAs have been shown to be 

involved in the insulin signaling pathway (e.g., let-7), the 

DNA damage response (e.g., miR-34), mitochondrial 

function (e.g., miR-146a), and cell death (e.g., miR-30e) 

[137,138]. Thus, altered expression of the miRNAs 

targeting these pathways may contribute to dysregulation 

of the inflammatory/anti-inflammatory balance, 

promoting aging. Moreover, it has recently been observed 

that miRNAs act as TLR ligands, inducing NF-B signal 

activation and IL secretion, thus triggering a 

proinflammatory response [139]. For example, Bernard et 

al. [140] have shown that damaged RNAs released from 

ultraviolet B (UVB)-exposed keratinocytes activate TLR3 

on intact keratinocytes, which initiates the cutaneous 

inflammation associated with sunburn. In addition, Chen 

et al. [141] have reported that RNA released from necrotic 

cells after ischemia-reperfusion (I/R) contributes to 

ischemic myocardial injury through TLR3-Trif signaling 

and that RNase treatment reduced inflammation, 

apoptosis, and infarction during I/R. Therefore, several 

age-related miRNAs play important roles in regulating 

chronic inflammation and the aging process. 

 

Exacerbation of age-related chronic inflammation by 

senescent-associated (SA) secretome 

 

Cellular senescence has been considered by many as a 

root of the aging process and age-related diseases. A 

recent renewed interest in cellular senescence has arisen 

due to the recognition that senescent cells have harmful 

effects on the host organism. The removal of senescent 

cells, identified using the p16 Ink4a-biomarker, by 

injecting a senolytic agent twice weekly, starting at one 

year of age, extended the median lifespan of mice by 

approximately 30% [142]. It is becoming clear that 

senescent cells can have seriously deleterious effects, 

interfering with various normal cellular functions and 

promoting the pathological process, including chronic 

inflammation, deterioration of the immune system, and 

age-related tumorigenesis. 

 

 
Table 2. Comparison of major key features defining age-related chronic inflammation. 

 

 

Age-related 

inflammation/molecular 

inflammation 

Inflammaging Senoinflammation 

Oxidation 
Sirt1, PPAR, FOXOs, 

SOD, CAT, PTK/PTP 
Sirt1, Notch 

FOXOs, SOD, CAT, 

LCK, SRC, 

PTK/PTP 

Inflammation 
COX-2, iNOS, TNFα, IL-

1,6, AMs 
TNFα, IL-6 

COX-2, iNOS, 

TNFα, IL-1,6 

Cytokine/Chemokines 
IL-7, IL-2RA, CXCL1,2,3, 

MCP-1, CCL3 

TGFβ, IL-8, 

TNFα 

cytokines, 

chemokines, MMPs, 

GFs, IGFBPs 

Apoptosis p53, p21, Bax   

Autophagy mTOR mTOR mTOR 

Dysregulated 

metabolism 
  

leptin, adiponectin, 

anabolism, 

catabolism 

ER stress   IRE, PERK, ATF4,6 

Insulin resistance   IRS-Ser-p, Akt 

Inflammasome   NLRP3 

Reference 6-9, 12-15 10, 11, 54 
6-9, 12-15, 23-25, 

42, 125 
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These dangerous effects of senescent cells are largely 

related to their release of proinflammatory mediators 

called the senescence-associated (SA) secretome, 

commonly referred to as SASP, in response to 

extracellular and intracellular stimuli. Importantly, it is 

being shown that NF-κB signaling is the major signaling 

pathway that stimulates the appearance of the SA 

secretome [76]. The SA secretome includes several 

families of factors such as cytokines, chemokines, growth 

factors, and proteases (See Table 1). According to recent 

studies, cellular senescence is accompanied by a marked 

increase in the SA secretome of 40-80 factors that 

participate in intracellular signaling [143]. The most 

potent SA secretome cytokines are IL-1β, IL-6, and IL-8. 

These proinflammatory cytokines are increased by DNA 

damage, replicative exhaustion, and oncogenic stimuli in 

keratinocytes, melanocytes, monocytes, fibroblasts, and 

epithelial cells [144-146]. Additional components of the 

SA secretome are matrix metalloprotease (MMP) family 

members that are consistently increased in most tissues in 

which inflammation is present. MMPs are known to 

regulate inflammation-related activities, including 

modulation of cytokines and chemokines.  

Therefore, SA secretome signaling associated with 

aging induces a large increase in the secretion of 

proinflammatory proteins and has emerged as an 

important additional contributor to chronic inflammation. 

As shown in Table 2, the SA secretome is upregulated in 

both senescent cells [144-146] and aged rodent organs 

[24, 125]. Similar to in vitro experiments, and animal and 

human data, several proinflammatory SA secretome 

mediators are also upregulated in aged human tissues 

according to our RNA-seq data comparing normal tissues 

with tissues from patients with cancer in the TCGA 

database (unpublished data from our lab).  

 

Senoinflammation concept as an inclusive schema for 

age-related chronic inflammation  

 

There are many publications describing the involvement 

of low-grade inflammation in the aging process and age-

related diseases. To explain its diverse implications, 

various terms and views have been proposed. Included are 

inflammaging, molecular inflammation, micro-

inflammation, pan-inflammation, and gero-inflammation, 

all of which describe the increased chronic inflammatory 

activity and proinflammatory mediators associated with 

aging [147-151], but at present, these age-related chronic 

inflammation phenomena still remain poorly defined and 

uncharacterized.   

Based on what we now know about chronic 

inflammation taking place during aging, it seems 

necessary to formulate a new concept with an expanded 

scope that can accommodate emerging new data. These 

new data generated from both within the inflammation 

domain, and outside of the field, provide diverse views on 

changes in age-related chronic inflammation that should 

allow for more integrated approaches to explore the basic 

mechanisms of aging, as well as for therapeutic 

intervention. 

As shown in Figure 1, the framework of the 

senoinflammation concept is built on three separate stages 

that are functionally interdigitated, ranging from the 

redox-sensitive core transcription factor NF-κB and 

polarized macrophages, to miRNAs and metabolically 

linked proinflammatory process, like, ER stress and 

autophagic activity that have not conventionally been 

considered part of age-related chronic inflammation. 

Mechanistically, the senoinflammation concept reveals 

molecular insights on the complex interaction among 

diverse transcription factors, inflammatory mediators, and 

proinflammatory metabolic pathways as being integral, 

thus, providing a comprehensive chronic inflammation 

schema for the aging process and age-related diseases.   

In our view, the senoinflammation concept proposed 

here has multiple merits. First, it defines the basic layout 

for the progressive nature of the inflammation process, 

resulting in the systemic inflammation seen in chronic 

inflammation, 2) it provides identifiable proinflammatory 

mediators and pathways responsible for the sustained 

inflammation, 3) it reveals the potential interactions 

among proinflammatory mediators/processes important 

for propagating the inflammatory condition, and 4) it 

provides therapeutically targeting selective pro-

inflammatory mediators.   

 

Conclusions 

 

In summary, based on the available findings from 

biochemical, molecular, and systems analyses, we 

propose the senoinflammation concept. It provides not 

only a broader scope, but also creates an intricate network 

among many inflammatory mediators that can lead to 

systemic chronic inflammation. When gene regulation is 

impaired because of constant damage to the genomic 

DNA by augmented oxidative susceptibility during the 

aging progresses, several key inflammatory transcription 

factors, including p53, AP-1, STAT, and NF-κB, that are 

important in cell survival become over-activated. The 

resulting aberrant gene regulation in senescent cells leads 

them into a proinflammatory state, thereby altering 

systemic chemokine or cytokine activities. The 

proinflammatory SA secretome imposes further stresses 

on the intracellular organelles, as well as tissues, organs, 

and systems, thus influencing metabolic disorders such as 

insulin resistance. It seems plausible that a vicious cycle 

takes place between SA secretome induction and 

metabolic dysregulation, as proposed in the 
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senoinflammation concept, and this may well be the 

underpinning of the aging process and age-associated 

diseases.  

 It is hoped that a better understanding of the 

molecular mechanisms involved in senoinflammation will 

provide a basic platform for the identification of potential 

targets that can suppress age-related chronic inflammation 

and thereby lead to the development of effective 

interventions to delay aging and suppress age-associated 

diseases. 
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